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Abstract

In this article we investigate Quasi-Monte Carlo methods for multidimensional im-
proper integrals with respect to a measure other than the uniform distribution.
Additionally, the integrand is allowed to be unbounded at the lower boundary of
the integration domain. We establish convergence of the Quasi-Monte Carlo esti-
mator to the value of the improper integral under conditions involving both the
integrand and the sequence used. Furthermore, we suggest a modification of an ap-
proach proposed by Hlawka and Mück for the creation of low-discrepancy sequences
with regard to a given density, which are suited for singular integrands.
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This paper is devoted to Quasi-Monte Carlo (QMC) techniques for weighted
integration problems of the form

I =
∫
[a,b]

f(x)dH(x), (1)

where H denotes a s-dimensional distribution with support K = [a,b] ⊆ Rs

and f is a function with singularities on the left boundary of K.

Numerical integration problems of this form frequently occur in practice, e.g.
in the field of computational finance. A typical example is the estimation
of the mean of a random variate X with support Rs. In case of variates with
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unbounded variance Monte Carlo simulation is inapplicable, but (after a trans-
formation) QMC algorithms might be available.

Let H(J) denote the probability of J ⊆ K under H. A sequence ω = (y1, y2, . . . )
is defined to be H-distributed if for all intervals K̃ ⊆ K the following condition
holds:

lim
N→∞

1

N

N∑
n=1

χK̃(yn) = H(K̃).

For Riemann integrable (thus bounded) functions it is well known that the
integral (1) can be approximated by

∫
K

f(x)dH(x) = lim
N→∞

1

N

N∑
n=1

f(yn),

where (yn)n>0 denotes an H-distributed sequence. The aim is to establish
conditions on integrands and sequences to guarantee the convergence of QMC
techniques for unbounded weighted problems and to justify the commonly
used strategy of

ignoring the singularity.

Furthermore techniques proposed by Hlawka and Mück for bounded, weighted
integration problems are adapted for the unbounded case.

1 Preliminaries and basic definitions

Hlawka [1] established the first quantitative error bound for QMC-algorithms
on the s-dimensional unit cube, where H equals the uniform distribution U. To
gain a deep insight in the classical QMC theory we refer to the monographs of
Kuipers and Niederreiter [2] or Niederreiter [3]. Quasi-Monte Carlo algorithms
for (Riemann) improper integrals with regard to the uniform distribution (H =
U [0, 1]s) were first investigated by Sobol. In [4] he dealt with integrands, which
are unbounded for x1x2 · · ·xs → 0. Asymptotic error estimates, as well as
numerical examples for some special functions were presented by Klinger [5],
De Doncker and Guan [6].

We consider integration problems, which have the following properties

• The improper integral (1) on a compact subinterval of Rs exists in the sense
that the limes

lim
c→a
c>a

∫
[c,b]

f(x)dH(x) (2)
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exists independent of the c, where c > a should be understood componen-
twise. We will define this limes as the value of the improper integral.

• If the integration domain is not a compact subinterval of Rs, i.e. at least
one coordinate is unbounded (ai = −∞ or bi = ∞ for a 1 ≤ i ≤ s), the
limes

lim
c→a+

∫
[c,d]

f(x)dH(x)

has to exist for every finite fixed upper boundary d ∈ (a,b), ‖d‖ < ∞.
Independently, for any fixed c ∈ [a,b] as lower integration boundary with
c > a componentwise, the limes

lim
d→b−

∫
[c,d]

f(x)dH(x)

needs to exists. Then we let the lower and upper integration bounds inde-
pendently tend to the boundaries of the integration domain K and define
the value of the improper integral as

lim
d→b−

lim
c→a+

∫
[c,d]

f(x)dH(x) .

• The integrand f(x) possibly has singularities at the left boundary of the
integration domain, i.e. limxi→ai

|f(x)| = ∞ for some i ∈ {1, . . . , s}.
• These singularities are the only singularities of f(x). In particular this means

that for all ε > 0 there exists some M < ∞, such that |f(x)| < M for all
x ∈ [a + ε, b] .

Before we recall Hlawka’s integration error bound (respectively a slight gen-
eralization for weighted integration) some more definitions are required:

Definition 1.1 The H-discrepancy of ω = (y1, y2, . . . ) measures the distribu-
tion properties of the sequence. It is defined as

DN,H(ω) = sup
J⊆K

∣∣∣∣ 1

N
AN(J, ω)−H(J)

∣∣∣∣ , (3)

where AN counts the number of elements in (y1, . . . , yN) falling into the inter-
val J , i.e.

AN(J, ω) =
N∑

n=1

χJ(yn).

Definition 1.2 By a partition P of K we mean a set of s finite sequences
(j = 1, . . . , s),

aj = ν
(j)
0 ≤ ν

(j)
1 ≤ · · · ≤ ν(j)

mj
= bj.
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In connection with such a partition one defines for each j two operators by

∆jf(x(1), . . . , x(j−1), ν
(j)
i , x(j+1), . . . , x(s)) =

f(x(1), .., x(j−1), ν
(j)
i+1, x

(j+1), .., x(s))−f(x(1), .., x(j−1), ν
(j)
i , x(j+1), .., x(s))

for 0 ≤ i < mj and

∆∗
jf(x(1), . . . , x(j−1), 1, x(j+1), . . . , x(s)) =

f(x(1), .., x(j−1), ν
(j)
i+1, x

(j+1), .., x(s))−f(x(1), .., x(j−1), 0, x(j+1), .., x(s)).

Definition 1.3 For a function f on K, we set the variation in the sense of
Vitali as follows

V (l)(f) = sup
P

m1−1∑
i1=0

· · ·
ml−1∑
il=0

∣∣∣∆1,...,lf(ν
(1)
i1 , . . . , ν

(l)
il

)
∣∣∣ ,

where the supremum is extended over all partitions P of K. The variation of
f restricted to an interval [a,b] will be denoted V[a,b](f).

Finally let 1 ≤ l ≤ s, 1 ≤ i1 < · · · < il ≤ s and V (l)(f ; i1, . . . , il) be the Vitali
variation of the restriction of f to the l-dimensional face

{(u1, . . . , us) ∈ K : uj = bj for j 6= i1, . . . , il} .

The variation in the sense of Hardy and Krause is defined by

V (f) =
s∑

l=1

∑
1≤i1<···<il≤s

V (l)(f ; i1, . . . , il). (4)

Naturally f is called of bounded variation on K, when V (f) < ∞.

Theorem 1.4 (Koksma-Hlawka Inequality) Let f be a function of bounded
variation (in the sense of Hardy and Krause) on K and ω = (y1, y2, . . . ) a se-
quence on K. The QMC integration error can be bounded by∣∣∣∣∣

∫
K

f(x)dH(x)− 1

N

N∑
n=1

f(yn)

∣∣∣∣∣ ≤ V (f)DN,H(ω). (5)

A proof of this central theorem can be found e.g. in [2] for the uniform distri-
bution, and in [7] for general distributions H (using a slight specialization to
variation in the measure sense).

In [4], Sobol looked at Quasi-Monte Carlo integration of singular functions
with respect to the uniform distribution. He gave conditions for its convergence
involving the function as well as the sequence used. In particular, his theorem
reads:
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Theorem 1.5 (Sobol, [4]) Let i′ ⊆ {1, . . . , s} and Ki′ be the boundary of
[0, 1]s where all coordinates x(i) = 1 for i /∈ i′. Let furthermore c < cN , where

cN = min1≤µ≤N

(
x(1)

µ , . . . , x(s)
µ

)
, and Gi′ the part of Ki′, where x(i1), . . . , x(ij) ≥

c. If for every i′ the integral∫
Ki′

x(i1) · · ·x(ij)
∣∣∣f (i′)(x(i′))

∣∣∣ dx(i′) (6)

converges and

Di′

N(x1, x2, . . . )
∫

Gi′ (c)

∣∣∣f (i′)(x(i′))
∣∣∣ dx(i′) = o(1) , (7)

then limN→∞
1
N

∑N
µ=1 f(xµ) =

∫
[0,1]s f(x)dx.

In this paper we will generalize this result to weighted integration, which
means integration with respect to arbitrary densities h(x). We will also inves-
tigate several ways to construct the sequences needed for QMC integration
w.r.t. arbitrary densities and propose ways to overcome some problems occur-
ring in conventional methods.

2 The one-dimensional case

Let us first consider the one-dimensional case. The main theorem of this section
generalizes and combines the Koksma inequality (1.4) in one dimension with
Sobol’s convergence theorem [4] for QMC integration of singular integrands.
Instead of the uniform distribution, we will assume an arbitrary distribution
H(x) on [a, b] and show convergence of the QMC integration. The multi-
dimensional case will be treated in a similar manner in the next section, so
we present the simpler one-dimensional case here to give a clear picture of the
ideas.

Definition 2.1 For a sequence ω = (y1, y2, . . . ) let cN = min1≤n≤N yn be the
smallest value of the first N elements of the sequence.

Theorem 2.2 Let a ≤ c ≤ cN . If a sequence {yi}i∈N and a differentiable
function f(x) on [a, b] with a singularity only at the left boundary satisfy the
condition

DN,H(ω)
∫ b

c
|f ′(x)| dx = o(1) (8)

as well as cN → a for N → ∞ , then the QMC estimator 1
N

∑N
n=1 f(yn)

converges to the value of the improper integral of f(x) on [a, b]:

lim
N→∞

1

N

N∑
n=1

f(yn) =
∫ b

a
f(x)dH(x) (9)
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Remark 2.3 For non-differentiable functions the condition is similar using
the variation V[cN ,b)(f) instead of the integral of the derivative. The multidi-
mensional case will be formulated in such a more general manner.

PROOF. To prove (9) we will approximate
∫ b
c f(x)dH(x) with 1

N

∑N
n=1 f(yn)

and show that the remaining terms tend to zero. Without loss of generality
we can assume the sequence to be sorted, and we define y0 and yN+1 so that
c = y0 ≤ y1 ≤ · · · ≤ yN ≤ yN+1 = b.

First, we establish an identity similar to Lemma 5.1 of [2]:

1

N

N∑
n=1

f(yn)−
∫ b

c
f(x)dH(x) = H(c) ·f(b)−

∫ b

c

(AN([c, x) , ω)

N
−H([c, x))

)
df(x)

(10)

The above identity can be proved by inserting terms, applying integration by
parts and using the fact that H(x) is a distribution function on [a, b].

1

N

N∑
n=1

f(yn)−
∫ b

c
f(x)dH(x)

=
1

N

N∑
n=1

f(yn)−(1−H(c)) f(b) + [H(x)−H(c)] f(x)|bc −
∫ b

c
f(x)dH(x)

=f(yN+1)−
N∑

n=0

n

N
(f(yn+1)− f(yn))

− f(b) + H(c)f(b) +
∫ b

c
[H(x)−H(c)] df(x)

=−
N∑

n=0

∫ yn+1

yn

n

N
df(x) + H(c)f(b) +

∫ b

c
[H(x)−H(c)] df(x)

=H(c)f(b)−
∫ b

c

(AN([c, x) , ω)

N
− ·H([c, x))

)
df(x)

Once this is established, the convergence is obvious:

∣∣∣∣∣ 1

N

N∑
n=1

f(yn)−
∫ b

a
f(x)dH(x)

∣∣∣∣∣
≤
∣∣∣∣∫ c

a
f(x)dH(x)

∣∣∣∣+ |H(c)| |f(b)|+ DN,H(ω)
∫ b

c
|f ′(x)| dx

According to the convergence of the improper integral on the whole interval,
the first and second terms tend to zero as c → a, and the condition of the
theorem ensures that the third term is o(1) and thus also tends to zero. 2
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Remark 2.4 The minimal element cN of the one-dimensional Halton-sequence
in basis 2 (which coincides with the Faure and Sobol sequences) is larger than
1/2N . In arbitrary bases p, the smallest element among the first N can be
bounded from below by 1/pblogp Nc+1.

The main drawback, from a practical point of view, of the preceding theorem
is the lack of sequences with low H-discrepancy. In practical issues one has
to generate these sequences by transformation from uniform low discrepancy
sequences. For distributions, where explicit inverse distribution functions are
available, the transformation of the uniform distributed sequence (x1, x2, . . . )
by an inversion method yi = H−1(xi) is obvious. This transformation preserves
the discrepancy, i.e

DN (x1, x2, . . . ) = DN,H (y1, y2, . . . ) . (11)

Unfortunately for most distributions the inverse distribution function is not
given explicitly and direct numerical methods for the inversion are often inef-
ficient.

In [8], Hlawka and Mück propose a systematic method for constructing H-
distributed sequences, which just uses the distribution function but not its
inverse. We focus on the case K = [0, 1].

Definition 2.5 Let ω = (x1, x2, . . . ) be a sequence in [0, 1) with discrepancy
DN(ω) with regard to the uniform distribution. The sequence ω̃ = (ỹ1, ỹ2, . . . )
is defined to be the sequence consisting of the points

ỹk =
1

N

N∑
r=1

b1 + xk −H(xr)c =
1

N

N∑
r=1

χ[0,xk] (H(xr)) . (12)

Lemma 2.6 Let the sequence ω̃ be defined by Eq. (12) and M = supx∈[0,1]h(x).
Then the H-discrepancy of ω̃ can be bounded by the following inequality

DN,H(ω̃) ≤ (1 + M)DN(ω).

All points constructed by the Hlawka-Mück method are of the form i/N ,
(i = 0, . . . , N), in particular, some elements ỹk of the transformed sequence ω̃
might assume a value of 0. Since this is the singularity of f(x), according to
Theorem 2.2 these sequences are not directly suited for unbounded problems.

Definition 2.7 To overcome this problem, we define the sequence ω̄ for i =
1, . . . , N as follows:

ȳk =

ỹk if ỹk ≥ 1
N

,
1
N

if ỹk = 0.
(13)
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Theorem 2.8 The H-discrepancy of ω̄ is bounded by

DN,H(ω̄) ≤ (M + 1)
(
DN(ω) +

1

N

)
.

PROOF. Let (x̄1, x̄2, . . . ) and (x̃1, x̃2, . . . ) be the sequences obtained by x̄i =
H(ȳi), resp. x̃i = H(ỹi). By Eq. (11) it is sufficient to estimate the uniform
discrepancy of (x̄1, x̄2, . . . ). For uniform discrepancies the following fact is
well known (e.g. Niederreiter [3]): Let (u1, u2, . . . ) and (v1, v2, . . . ) be two
sequences in [0, 1] with discrepancies D1 and D2, then |D1 −D2| < ε, whenever
max1≤i≤N |ui − vi| < ε.

Now, the calculation

|xk − x̄k| ≤ |xk − x̃k|+ |x̃k − x̄k|

=
∣∣∣∣∫ ỹk

yk

h(t)dt
∣∣∣∣+ ∣∣∣∣∫ ỹk

ȳk

h(t)dt
∣∣∣∣ ≤ M

(
DN(x1, x2, . . . ) +

1

N

)
.

completes the proof. 2

Remark 2.9 The discrepancy of uniform low discrepancy sequences is typ-
ically of the order O( log N

N
) (resp. O( 1

N
) for nets). Therefore the additional

factor (1/N) one inherits though the shift (13) does not affect the asymptotic
behavior of the integration error.

Remark 2.10 Another method to avoid the inversion can be obtained by a
suitable integral transformation. With the help of such a transformation, in
Monte Carlo algorithms often referred to as importance sampling, it might
even be possible to avoid some singularities.

3 Multivariate singular integration

We will now look at arbitrary-dimensional integrals∫
[a,b]

f(x)dH(x) , (14)

where the integration domain is taken as a compact subinterval [a,b] of Rs.

Remark 3.1 This is no restriction: If any of the dimensions is unbounded,
we can first carry out the calculation on compact intervals and then take the
limits to infinity as indicated in Section 1.
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The notations and operators used in the sequel are defined in Section 1. In
addition we need the summation symbol

∑∗
:

Definition 3.2 Given an expression F depending on variables x(r), . . . , x(s)

and a partition of Nr,s = {r, r+1, . . . , s} into two subsets L = {x(l1), . . . , x(lp)}
and Nr,s \ L = {x(lp+1), . . . , x(ls−r)}, we use the notation

F (L) = F
(
x(l1), . . . , x(lp); x(lp+1), . . . , x(ls−r)

)
.

The summation operator
∑∗

is defined as the sum over all elements of the
set Pp = {L ⊆ Nr,s : card(L) = p}, i.e.∑∗

r,...,s;p

F =
∑

L∈Pp

F (L).

The integration by parts formula used in the proof of the previous section
for differentiable one-dimensional functions can be generalized to arbitrary
s-dimensional functions. It is commonly referred to as Abel’s summation for-
mula:

Lemma 3.3 (Abel’s summation formula, e.g. [2]) Let
(
η

(j)
0 , η

(j)
1 , ..., η(j)

mj

)
and

(
ξ

(j)
0 , ξ

(j)
1 , . . . , ξ(j)

mj

)
with j = 1, . . . , s be two partitions of the interval [a,b],

and f(x) and g(x) two functions on [a,b]. Then

m1−1∑
i1=0

· · ·
ms−1∑
is=0

f
(
ξ

(1)
i1+1, . . . , ξ

(s)
is+1

)
∆1,...,sg

(
η

(1)
i1 , . . . , η

(s)
is

)

=
s∑

p=0

(−1)p
∑∗

1,...,s;p

∆∗
p+1,...,s

m1−1∑
i1=0

· · ·
mp−1∑
ip=0

g
(
η

(1)
i1 , . . . , η

(p)
ip , x(p+1), . . . , x(s)

)
×∆1,...,pf

(
ξ

(1)
i1 , . . . , ξ

(p)
ip , x(p+1), . . . , x(s)

)
. (15)

For a proof of this important equation we refer to the monograph [2] of Kuipers
and Niederreiter.

Using this summation formula, we can now prove the convergence of the s-di-
mensional Quasi-Monte Carlo estimator to the value of the improper integral
(14), even though the integrand can be singular on the whole left boundary
of the integration area. Conventional methods usually apply the Koksma-
Hlawka inequality (5). Here this inequality does not give an upper bound
for the integration error, because the singularity causes the function to be of
unbounded variation on [a,b]. We only require the function to be of bounded
variation on every compact subinterval of (a,b]. The proof will follow the lines
of the proof of the Koksma-Hlawka inequality given in [2], so for some parts
of the proof we just refer to that book.
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Theorem 3.4 (Convergence of the multidimensional QMC estimator)
Let f(x) be a function on [a,b] with singularities only at the left boundary of
the definition interval (i.e. f(x) → ±∞ only if x(j) → aj for at least one j),
and let furthermore cN,j = min1≤n≤N y(j)

n and aj < cj ≤ cN,j. If the improper
integral (14) exists in the sense of Section 1, and if

DN,H (ω) · V[c,b](f) = o(1), (16)

then the QMC estimator converges to the value of the improper integral:

lim
N→∞

1

N

N∑
n=1

f (yn) =
∫
[a,b]

f(x)dH(x) . (17)

PROOF. Like in the one-dimensional case we estimate the integration error
on the interval [c,b], where the function f(x) is regular for any choice of c,
and show that the remaining terms vanish as c → a. Again similar to the
proof of Theorem 2.2 we use a function

g(x) =
1

N
A([c,x) , ω)−H([c,x)) (18)

for a given sequence ω = (y(j)
n ), 1 ≤ n ≤ N , 1 ≤ j ≤ s. One has to notice that

this function is merely the function used in the definition of the discrepancy,
so that supx∈[c,b] |g(x)| ≤ DN,H(ω).

Using a double partition cj = ξ
(j)
0 = η

(j)
0 ≤ ξ

(j)
1 < η

(j)
1 ≤ · · · < η(j)

mj
= ξ

(j)
mj+1 =

bj (j = 1, . . . , s) of the interval [c,b] with the additional condition that the

ξ
(1)
1 , . . . , ξ(j)

mj
contain at least our sequence ω, we now apply Lemma 3.3 to the

function g(x). As argued in [2], the left hand side of Eq. (15),

m1−1∑
i1=0

· · ·
ms−1∑
is=0

f
(
ξ

(1)
i1+1, . . . , ξ

(s)
is+1

)
∆1,...sg

(
η

(1)
i1 , . . . η

(s)
is

)
,

can be simplified to

LHS =
1

N

N∑
n=1

f(yn)−
m1−1∑
i1=0

· · ·
ms−1∑
is=0

f
(
ξ

(1)
i1+1, . . . , ξ

(s)
is+1

)
∆1,...sH

(
s⊗

l=1

[
cl, η

(l)
il

))
,

(19)
where ⊗ denotes the Cartesian product.

For the right hand side we notice that g(x) = 0 if any of the x(j) = cj. Also,
g(b) = 1−H ([c,b)), so that the summand of p = 0 can be simplified as

∆∗
1,...,sg

(
x(1), . . . x(s) )f( x(1), . . . , x(s)

)
= g(b)f(b). (20)
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Similarly, for 1 ≤ p ≤ s, only terms with x(p+1) = bp+1, . . . , x
(s) = bs contribute

(if any x(p+j) = cp+j, the function value of g(x) vanishes):

|RHS| ≤ |g(b)f(b)|+
s∑

p=1

|(−1)p|
∑∗

1,...,s;p

m1∑
i1=0

· · ·
ms∑

is=0

∣∣∣g (η(1)
i1 , . . . , η

(p)
ip

)∣∣∣
×
∣∣∣∆1,...,pf

(
ξ

(1)
i1 , . . . , ξ

(p)
ip , bp+1, . . . , bs

)∣∣∣
≤ |g(b)f(b)|+

s∑
p=1

∑∗

1,...,s;p

DN,H(ωp+1,...,s)V
(p)(f(x(1), ..., x(p−1), bp+1, ..., bs).

(21)

with ωp+1,...,s denoting the projection of the sequence ω on the upper boundary
of [a,b] so that the components ip+1, . . . , is are set to b(ip+1), . . . , b(is), and the
discrepancy is computed on the face of [a,b], in which ωp+1,...,s is contained.

Since the second term in Eq. (19) is nothing else but a Riemann-Stieltjes
sum to the integral

∫
[c,b] f(x)dH(x), and the rest is independent of the double

partition, we let the mesh size of the double partition tend to zero

max
1≤j≤s

max
0≤i≤mj

(η
(j)
i+1 − η

(j)
i ) → 0

to obtain the multidimensional version of Eq. (10):∣∣∣∣∣ 1

N

N∑
n=1

f (yn)−
∫
[c,b]

f(x)dH(x)

∣∣∣∣∣ ≤ |(1−H([c,b)))f(b)|+|DN,H(ω)|·
∣∣∣V[c,b](f)

∣∣∣
(22)

The existence of the improper integral in the sense of Section 1 guarantees
that

Irest :=

∣∣∣∣∣
∫
[a,b]

f(x)dH(x)−
∫
[c,b]

f(x)dH(x)

∣∣∣∣∣
tends to zero as we let c → a. Thus, we have

∣∣∣∣∣ 1

N

N∑
n=1

f (yn)−
∫
[a,b]

f(x)dH(x)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

N

N∑
n=1

f (yn)−
∫
[c,b]

f(x)dH(x)

∣∣∣∣∣+ Irest

≤ |[1−H([c,b))] f(b)|+ DN,H(ω) · V[c,b](f) + Irest . (23)

For N → ∞ and so c → a, the first and third terms obviously tend to zero,
while the conditions of the theorem guarantee this also for the second term.
Thus the proof is finished. 2

As in the one-dimensional case, one faces the problem of generating H-dis-
tributed sequences. Multidimensional versions for inversion methods are well
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known (e.g. Devroye [9]). Under weak, Lipschitz type conditions, Hlawka and
Mück [10] showed the following bound for the H-discrepancy of sequences ω̃
generated by multidimensional inversion methods:

DN,H(ω̃) ≤ c (DN(ω))1/s , (24)

where ω denotes the original uniformly distributed sequence. Furthermore in
[10] a multidimensional approach similar to Eq. (12) is given.

We again focus on distributions on [0, 1]s and specialize our analysis to distri-
butions with independent marginals, i.e. H(x) =

∏s
i=1 Hi(x

(i)).

In this case one can transform each dimension separately by one-dimensional
inversion methods and improve the bound (24) similar to the one-dimensional
case to

DN,H(ω̃) = DN(ω). (25)

Hlawka [11] suggested to apply the construction (12) to every dimension in-
dividually to avoid an inversion of H1, . . . , Hs and gave a bound on the H-
discrepancy of sequences ω̄ generated by this procedure:

DN,H(ω̄) ≤ (1 + 3sM)DN(ω),

where M = sup h(x).

Similar to one dimension, Hlawka’s method might lead to sequences, which are
not suited for unbounded integrands. Our final theorem shows a modification,
which leads to QMC estimators for a wide range of functions. Before we can
state it, we need to recall a lemma, which will be essential for the proof.

Lemma 3.5 (e.g. [8]) Let Ω1 = (u1, . . . , uN) and Ω2 = (v1, . . . , vN) be two
sequences in [0, 1]s. If the condition

|u(j)
i − v

(j)
i | ≤ εj,

holds for all 1 ≤ j ≤ s and all 1 ≤ i ≤ N , we get the following bound on the
difference of the discrepancies

|DN(Ω1)−DN(Ω2)| ≤
s∏

j=1

(1 + 2εj)− 1. (26)

Theorem 3.6 Let H be a s-dimensional distribution with independent mar-
ginal distributions H1, . . . , Hs and M = sup h(x) < ∞. Let furthermore ω =
(x1, x2, . . . ) be a sequence with (uniform) discrepancy DN(ω) and define the
sequence ω̃ = (ỹ1, ỹ2, . . . ) by

ỹ
(j)
i =

1

N

N∑
n=1

b1 + x
(j)
i −Hi(x

(j)
n )c,

12



for j = 1, . . . , s and n = 1, . . . , N . Then the sequence ω̄

ȳ
(j)
k =

ỹ
(j)
k if ỹ

(j)
k ≥ 1

N
,

1
N

if ỹ
(j)
k = 0

(27)

has the following two properties:

DN,H(ω̄) ≤ (1 + 4M)sDN(ω)

min
1≤j≤s,1≤i≤N

ỹ
(j)
i ≥ 1

N

PROOF. Let x̄
(j)
i = H−1

i (ȳ
(j)
i ). Similar to Theorem 2.8 we get the inequality

|x(j)
i − x̄

(j)
i | ≤ M

(
DN(ω) +

1

N

)
.

Using Lemma 3.5 we obtain

DN(x̄1, x̄2, . . . ) ≤ DN(ω)− 1 +
(
1 + M

(
DN(ω) +

1

N

))s

.

By Eq. (25) and the inequality 1
N
≤ DN(ω) ≤ 1 it follows that

DN,H(ω̄) ≤ DN(ω)−1+
(
1 + M

(
DN(ω) +

1

N

))s

≤ (1+4M)sDN(ω). 2

4 Conclusion

In this article we successfully showed that Quasi-Monte Carlo methods can also
be applied to improper s-dimensional integrals, where the integrand function
f(x) becomes singular at the integration boundary, assuming the function
and the low-discrepancy sequence in use display certain properties as listed in
Theorem 3.4. While similar conditions have long been known [4] for integration
with respect to the uniform distribution (i.e. using uniformly distributed low-
discrepancy sequences), we were able to generalize these results to integration
with respect to arbitrary multidimensional densities, often called weighted
integration.

In [8] and [11] Hlawka and Mück proposed a scheme to transform a uniformly
distributed low-discrepancy to a low-discrepancy sequence with given density.
However, the new sequence does not in general fulfill the conditions set forth
in our convergence theorems and so cannot be used for the QMC integra-
tion of singular integrands. We were able to give a slight modification of the

13



transformed sequence so that it does not loose its low discrepancy, but can be
used for QMC weighted integration of singular integrands as our convergence
theorems show.

We looked at one-dimensional densities and multidimensional densities which
can be factored. Arbitrary multidimensional densities lead to the problem
that even the inversion method does in general not preserve the discrepancy
of a low-discrepancy sequence. Therefore the creation of low-H-discrepancy se-
quences still poses an open problem, in particular sequences suited for singular
integrands.
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