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Abstract

In this paper the Quasi-Monte Carlo methods for Runge Kutta solution techniques
of differential equations, which were developed by Stengle, Lécot, Coulibaly and
Koudiraty, are extended to delay differential equations of the form f(t, y(t), y(t −
τ(t))). The retarded arguments are approximated by interpolation, after which the
conventional (Quasi-)Monte Carlo Runge Kutta methods can be applied. We give
a proof of the convergence of this method and its order in a general form, which
does not depend on a specific Quasi-Monte Carlo Runge Kutta method. Finally,
a numerical investigation shows that - as with ordinary differential equations - for
heavily oscillating delay differential equations, this quasi-randomized method leads
to an improvement compared even to high order Runge Kutta schemes.

Key words: Delay differential equation, Quasi-Monte Carlo methods,
Runge-Kutta methods

1 Introduction

In physics and other engineering subjects, the rate of change of a process y(t)
often does not only depend on the value of y(t) at time t, but also on the
values of the process in the past. In the general form, the ”delay differential
equation” for the process then can be written in the form:

y′(t) = f(t, y(t), y(t− τ1(t)), ...y(t− τk(t))) for t > t0, (1)

y(t) = y0(t) for t ≤ t0 . (2)
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The most noticeable difference to ordinary initial value problems is that the
initial value must be given as a function on a certain interval (which is basically[
inf t≥t0

0≤j≤k
t− τj(t), t0

]
) instead of only the value at the starting point t0.

In [1] and [2] Stengle proposed a (randomized) Monte Carlo algorithm for the
solution of the initial value problem

y′(t) = f(t, y(t)), 0 < t < T, y(0) = y0 , (3)

where f is smooth in y but only bounded and Borel measurable in t. The family
of solution methods he proposed is akin to the Runge-Kutta family, and thus
called the Runge-Kutta Monte Carlo (RKMC) family. In his derivation he does
not discretize the time, but only the spatial dimensions y, and solves the re-
maining integral equation using Monte Carlo integration. Lécot [3], Coulibaly
and Lécot [4] and Lécot and Koudiraty [5] generalized this method for orders
up to 3, and additionally used Quasi-Monte Carlo methods to calculate the
resulting integral (thus the name RKQMC methods for them).

The application of these Monte Carlo and lately also Quasi-Monte Carlo meth-
ods to numerical integration and integral equations has been extensively stud-
ied in literature. While Monte Carlo methods employ random points to es-
timate a given integral, Quasi-Monte Carlo methods lay more emphasis on
good distribution rather than randomness - quite often they are referred to as
deterministic variants of Monte Carlo method. Instead of using (pseudo) ran-
dom numbers, in Quasi-Monte Carlo methods deterministic sequences are used
which have a very good uniform distribution, usually called low-discrepancy
sequences. The uniformity of distribution of a point set S consisting of N
points x0, . . . , xN−1 is measured in terms of its discrepancy, defined as

DN(S) = sup
a,b∈[0,1]s

∣∣∣∣∣A([a, b), S)

N
− λs([a, b))

∣∣∣∣∣ , (4)

where A(E, S) denotes the number of points xj ∈ S, 0 ≤ j < N that
lie inside the interval E, and λs(E) is the s-dimensional Lebesgue measure.
The most prominent sequences with the lowest known orders of discrepancy

DN(S) ≤ O
(

(logN)s−1

N

)
, are Halton’s sequences and so called (t,m, s) net se-

quences, with Sobol’s, Faure’s and Niederreiter’s sequences as special cases.
For a detailed discussion of these sequences and discrepancy in general, we
refer the interested reader to the monographs of Niederreiter [6] and Drmota
and Tichy [7].

In their papers, Stengle, Coulibaly, Koudiraty and Lécot apply the Runge-
Kutta (Quasi) Monte Carlo methods only to ordinary differential equation
with initial conditions as given in equation (3). We will first give a brief out-
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line of their methods here, before applying them to delay differential equations.
Under the assumptions mentioned above (f does not even have to be differen-
tiable in t, let alone smooth), f(y, y(t)) is Taylor-expanded only with respect
to y(t) and the differential equation is recursively substituted into itself. This
leads to an equation of the form (see [8] or [5]):

f(t0 + h) = y(t0)+
s∑

i=1

∫ u0

t0
· · ·

∫ ui−1

t0
Fi (u1, . . . , ui; y(t0)) dui . . . du1 +O(hs+1) , (5)

where u0 = t0 + h and the Fk, 1 ≤ k ≤ s, are defined recursively by F0(y) =
y, Fi := DyFi−1f(ui, y). The sum is then combined into one s-dimensional

integral over a new function Gs with ū =
(
uπ(1), . . . , uπ(s)

)
such that uπ(1) ≤

uπ(2) ≤ · · · ≤ uπ(s):

f(t0 + h) = y(t0) +
1

s!hs−1
n

∫
(t0,t0+h)s

Gs (ū; y(t0)) du +O(hs+1) , (6)

The function Gs is rewritten using a suitable identity (and according order
conditions on the coefficients) to get rid of the derivatives of Fi with respect to
y(t). Finally, the remaining integral is approximated by Monte Carlo integra-
tion. The s-order RKQMC method generates a sequence (yn)0≤n≤n∗ defined
by (see e.g. [3] or [5]):

yn+1 = yn +
hn

s!N

∑
0≤j<N

Gs (tn,j, y(tn)) , (7)

where tn,j = tn + hnx̄j and x̄
(1)
j ≤ x̄

(2)
j ≤ · · · ≤ x̄

(s)
j are the elements of the

s-dimensional uniformly distributed sequence (xj)0≤j≤N with their dimensions
sorted in ascending order. The explicit forms of the functions G1, G2 and G3

as given by Lécot [3] and Koudiraty [5] are shown in equations (15) to (17),
the corresponding order conditions can be found in the cited papers (esp. [8,
equations (4.12) to (4.15)]).

We will use this method and extend it to delay differential equations in the
rest of the paper. Our discussion will not depend on one specific RKQMC
method, however, we will also give specific proofs for the convergence and its
order of the RKQMC1 [3], RKQMC2 [3] and RKQMC3 [8] methods applied
to delay differential equations.
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2 Description of the problem

In this paper, we consider initial value problems for delay (also called retarded)
differential equations (DDE) with one retarded argument having the form

y′(t) = f (t, y(t), y(t− τ(t))) , for t ≥ t0,

y(t) = φ(t), for t ≤ t0 ,
(8)

where y(t) is a d-dimensional real-valued function (which is in general not
smooth), τ(t) is the continuous delay function, which we assume to be bounded
from below (0 < τ0 = inft≥t0 τ(t)). Furthermore, φ(t) is the initial func-
tion, which is assumed to be piecewise continuous at least on the interval
(inft0≤t(t− τ(t)), t0). We will not discuss the simplest case of a constant delay
function τ(t) = τ0, but instead the more general case of a delay function τ(t)
satisfying

t1 − τ(t1) ≤ t2 − τ(t2) for t1 ≤ t2 , (9)

i.e. T (t) := t− τ(t) is an increasing function of t.

Solutions of the differential equation (8) are continuous for all t > t0 and
piecewise differentiable. Provided that f(t, y, z) is (locally) Lipschitz w.r.t. y
and z, the existence and uniqueness theorems for ordinary differential equa-
tions carry over verbatim. However, even if f and φ are smooth, the solution
y(t) is only smooth if φ(t) solves the differential equation (8). Otherwise, the
solution y(t) will have discontinuous derivatives y(j)(tk) for j ≥ k at times tk,
which are recursively defined by tk = T−1(tk−1) (see [9]). This means that with
each additional time interval of length hk = tk − tk−1, the discontinuities are
smoothed out, and all the derivatives up to the k-th are continuous. For a con-
stant delay function, we have T−1(tk−1) = tk−1 + τ0, and the solution y(t) has
k continuous derivatives at tk = t0 +kau0, and y(k+1)(t) in general has a jump
discontinuity at tk. If the initial function φ(t) (or its derivatives) have discon-
tinuities, a similar statement holds with t0 replaced by the discontinuities of
the initial function (see [9]).

3 Runge Kutta QMC Methods applied to delay differential equa-
tions

We will first discuss how the delayed argument y(t − τ(t)) can be treated,
and then deduce the Runge Kutta Quasi-Monte Carlo scheme for delay dif-
ferential equations, which is a straight generalization of Stengle’s, Lécot’s and
Koudiraty’s schemes applied to this type of differential equations. However,
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due to the special nature of delay differential equations, some things need to
be handled more carefully.

3.1 Treatment of the retarded value

The main obstacle when solving delay differential equations is the way to treat
the additional argument y(t − τ(t)) which depends on the past values of the
solution. Several attempts have been made (mainly by Bellman [10] et al.)
to calculate the retarded values by recursively using the DDE itself, however,
with this approach the number of calculations increase drastically with T .
The other approach to the retarded argument is interpolation (see e.g. [11]),
which we will use. Since for the numerical solution of the differential equation,
the time is split into discrete time steps, labeled with index n, we have the
approximated values of the solution at the discrete times tj(0 ≤ j < n),
available when calculating yn = y(tn) for n ≥ 0. It seems natural to use an
interpolating function Pq(t; (yi)i≤n) to approximate the values y(t−τ(t)) from
the values y(tj), 0 ≤ j < n, if t− τ(t) ≥ t0. If t− τ(t) < t0, the initial function
φ(t) can be used for the exact values of the solution, anyway.

Since the solutions of the differential equation are not smooth, the interpo-
lation must be done using only past values with τ̄1 ≤ tk ≤ · · · ≤ t − τ(t) ≤
· · · ≤ tk+m ≤ τ̄2 where (τ̄1, τ̄2) is the largest interval of smoothness containing
t− τ(t), i.e. τ̄1 and τ̄2 are the closest points where the derivatives of the solu-
tion have discontinuities as discussed in the last section. As the value of the
derivative of y(t) can be easily calculated for each time tj by simply inserting
into the differential equation, Hermite interpolation (as investigated in [9]) is
used here since it only requires half the points ordinary Lagrange interpola-
tion would require. Although the interpolating function then also depends on
the approximated values of the derivative of y(t), we will suppress this in our
notation.

Note that the requirement of the interpolation points lying inside an interval of
smoothness also poses a practical restriction on the value of the delay function:

τ(t) ≥ ph or h ≤ τ(t)

p
, (10)

where p is the number of points needed for interpolation, and h is the time
step, if the time is discretized into fixed time intervals. Note also, that this
restriction is sufficient, but not the best possible, and of course it can also be
seen as an upper bound for the time step h.

If stepsize control methods are applied to the Runge-Kutta method (i.e. the
time step hj of the j-th step is not fixed but chosen such that the error does
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not exceed a prescribed threshold), the restriction reads τ(t) ≥ ∑p−1
j=0 hν−j

where ν is the largest number for which tν = t0 +
∑ν

j=1 hj < t, assuming a
smooth initial function. (If the initial function is not smooth, the additional
discontinuities of the derivatives force an even tighter bound.)

If these restrictions are not fulfilled, one can still try to obtain a RKQMC
scheme by a Taylor-Expansion in the retarded argument as well, although
this would complicate the algorithm and its derivation considerably.

These restrictions are the reason why mostly low-order methods for delay
differential equations have been considered. In the sequel, we will also not
develop high order methods, but instead look at the effect of the application of
Quasi-Monte Carlo methods to Runge Kutta algorithms for delay differential
equations.

By approximating the retarded value by the past values of the solution, we
can directly insert this interpolation function

z(t) = z(yi)i≤n
(t) =

φ(t− τ(t)), if t− τ(t) ≤ t0

Pq (t− τ(t); (yi) , (y′i)) otherwise
(11)

into the differential equation and arrive at an ordinary differential equation

y′(t) = f(t, y(t), y(t− τ(t))) ≈ f(t, y(t), z(t)) =: g(t, y(t)) . (12)

Applying the RKQMC methods for ordinary differential equations (equation
(7) or [4,3,8,5]), we can approximate a solution of the delay differential equa-
tion.

3.2 The RKQMC schemes for DDE

In the sequel, we will use a notation which is independent of the Runge Kutta
scheme, and only where necessary use scheme-specific results. We will further-
more assume hn < 1 for all n.

Using the notation of [8], the exact value y(tn+1) is approximated by the s-
order Runge-Kutta (Q)MC scheme as:

y(tn+1) = y(tn) +
1

s!hs−1
n

∫
(tn,tn+1)s

Gs (ū; y(tn); y(t ≤ tn)) du + hnεn (13)

where Gs is the differential increment function of the scheme, and εn is the
local truncation error. This integral is then approximated by Quasi-Monte
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Carlo integration and interpolation of the retarded argument as

yn+1 = yn +
hn

s!N

∑
0≤j<N

G̃s

(
t̄j,n; yn, (yi)i≤n

)
, (14)

where G̃s(t; y; (yi)i≤n) := Gs

(
t; y; z(yi)i≤n

(·)
)

denotes the function Gs with the

retarded values interpolated from the points (yi)i≤n.

For the first-, second- and third-order RKQMC schemes of Lécot [3] and
Koudiraty [8], the corresponding functions Gs are ([3,8]):

G1 (u; y; z(·)) = f (u, y, z(u− τ(u))) (15)

G2 (ū; y; z(·)) = f (ū1, y, z(ū1 − τ(ū1))) +
1

β
f (ū2, y, z(ū2 − τ(ū2))) +

+
1

α
f (ū2, y + αhnf (ū1, y, ū1 − τ(ū1)) , z(ū2 − τ(ū2)))

(16)

G3 (ū; y; z(·)) = a1f(ū1, y, z(ū1 − τ(ū1)))+

+
L2∑
l=1

a2,lf (ū2, y + b2,lhnf(ū1, y, z(ū1 − τ(ū1))), z(ū1 − τ(ū1))) +

+
L3∑
l=1

a3,l

(
ū3, y + b

(1)
3,l hnf (ū1, y, z(ū1 − τ(ū1))) +

+b
(2)
3,l hnf (ū2, yn + c3,lhn(ū1, yn), z(ū2 − τ(ū2))) , z(ū1 − τ(ū1))

)
(17)

The condition on α and β is 1
α
+ 1

β
= 1 [3], and the conditions for the coefficients

in G3 can be found in [8].

3.3 Convergence proof

In the convergence proof we will use the following definitions for the Runge
Kutta error δn, the QMC approximation error dn, the interpolation error ηn

and the local truncation error εn:

δn :=
1

s!hs
n

∫
(tn,tn+1)s

{
G̃s

(
ū; yn, (yi)i≤n

)
− G̃s

(
ū; y(tn), (yi)i≤n

)}
du (18)

dn :=
1

s!N

∑
0≤j<N

G̃s

(
t̄j,n; yn, (yi)i≤n

)
− 1

s!hs
n

∫
(tn,tn+1)s

G̃s

(
ū; yn, (yi)i≤n

)
du

(19)

ηn :=
1

s!hs
n

∫
(tn,tn+1)s

{
G̃s

(
ū; y(tn), (yi)i≤n

)
−Gs (ū; y(tn), y(t ≤ tn))

}
du (20)

εn :=
y(tn+1)− y(tn)

hn

− 1

s!hs
n

∫
(tn,tn+1)s

Gs (ū; y(tn); y(t ≤ tn)) du (21)
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Since the interpolation does not explicitly depend on the RKQMC scheme
used, we can give a general bound for the interpolation error ηn:

Proposition 1 If Gs is Lipschitz continuous in its second and third argu-
ments (with Lipschitz constant L2), the interpolation is chosen such that the
interpolation error is of order p, and the interpolation is Lipschitz continuous
in the sense that G̃s fulfills∥∥∥G̃s (t, y(t); (vi, v

′
i)i≤n)− G̃s (t, y(t); (wi, w

′
i)i≤n)

∥∥∥ ≤ L̃2 max
i≤n

‖vi − wi‖ (22)

for vi, wi ∈ B(y(ti), ρ), ρ > 0 and t ≤ ti+hi for all i ≤ n, then the interpolation
error ηn is bounded by

‖ηn‖ ≤
L′2
s!

(
max
j≤n

‖ej‖+ Khp
n

)
(23)

with constants L′2 = max(L2, L̃2) and K > 0.

Remark 2 Without loss of generality, we do not need to include the values
of the derivatives at the right hand side of assumption (22), since they are
calculated by the delay differential equation itself. The Lipschitz-continuity of
Gs in general demands the Lipschitz-continuity of f(t, y(t), y(t − τ(t))), so
that the difference in the derivatives can be bounded by the difference of the
function values using this Lipschitz-continuity.

PROOF. Adding and subtracting the term Gs(ū, y(tn); z(y(ti))i≤n
(·)) to the

integrand of the definition of ηn and using the Lipschitz conditions on Gs and
G̃s yields the result

‖ηn‖ ≤
1

s!hs
n

(
L̃2 max

i≤n
‖yi − y(ti)‖hs

n+

+L2

∫
(tn,tn+1)s

max
1≤j≤s

∥∥∥z(y(ti))i≤n
(uj − τ(uj))− y(uj − τ(uj))

∥∥∥ du

)
≤

≤ L′2
s!

(
max
j≤n

‖en‖+ Khp
)

.

Theorem 3 Let Gs be Lipschitz continuous in its second and third arguments
with Lipschitz constant L2 and of bounded variation in the sense of Hardy and
Krause, the RKQMC method be chosen such that for an order p ≥ 1 there
exist c1(h) = O(1), c2(h) = O(1) and c3(h) = O(1) with

‖εn‖ ≤ c1(hn)hp
n (24)

‖δn‖ ≤ c2(hn) ‖en‖ (25)

‖dn‖ ≤ c3(hn)D∗
N(S) , (26)
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where S = (x1, . . . ,xN) is the point set used for the QMC integration. If the
retarded values are interpolated by a q-order method, and the assumptions of
Proposition 1 are fulfilled, then the error ‖en+1‖ of the corresponding RKQMC
method for delay differential equations is bounded by

‖en‖ ≤ ‖e0‖ etn(c2+
L2
s! ) +

etn(c2+
L2
s! ) − 1

c2 + L2

s!

{
c3D

∗
N(X) +

L2

s!
MHq + c1H

p
}

,

(27)
where H = max0≤i≤n−1 hi and ci = max0≤j≤n−1 ci(hj) = ci(H).

Remark 4 If the RKQMC method used is convergent for ordinary differential
equations, the existence of c1(hn), c2(hn) and c3(hn) is ensured since this is
the most important part of the convergence proof for ODE. For this reason, we
will not try and give the assumptions of theorem 3 in a more fundamental way.
Inequality (24) states that the RK method is at least of order p and inequality
(26) is basically a consequence of f and thus Gs being of bounded variation
in the sense of Hardy and Krause, so that the Quasi-Monte Carlo integration
error can be estimated by the famous Koksma-Hlawka inequality.

Proof of theorem 3: Combining the methods of [8] and [9], the error en =
yn − y(tn) of the scheme can be written as

en+1 = yn+1 − y(tn+1) = {yn − y(tn)}+

+
hn

s!

 1

N

∑
0≤j<N

G̃s

(
t̄j,n; yn, (yi)i≤n

)
− 1

hs
n

∫
(tn,tn+1)s

G̃s

(
ū; yn, (yi)i≤n

)
du

+

+
1

s!hs−1
n

∫
(tn,tn+1)s

{
G̃s

(
ū; yn, (yi)i≤n

)
− G̃s

(
ū; y(tn), (yi)i≤n

)}
du+

+
1

s!hs−1
n

∫
(tn,tn+1)s

{
G̃s

(
ū; y(tn), (yi)i≤n

)
−Gs (ū; y(tn), y(t ≤ tn))

}
du−

− hnεn .

And so

‖en+1‖ ≤ ‖en+1‖bnd := ‖en‖+ hn ‖dn‖+ hn ‖δn‖+ hn ‖ηn‖+ hn ‖εn‖
≤ ‖en‖+ hnc3(hn)D∗

N(X) + hnc2(hn) ‖en‖+ c1(hn)hp+1
n +

+ hn
L2

s!

{
Mhq

n + max
j≤n

‖en‖
}

≤
(
1 + hn

(
c2 +

L2

s!

))
‖en‖bnd + hn

(
c3D

∗
N(X) +

L2

s!
MHq + c1H

p
)

Recursively inserting this inequality into itself, using the inequality 1+hna ≤
ehna and a telescopic sum finally yield the result.
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Remark 5 One should note that in the proof given in [9], it is assumed that
the approximation formula z(t) to the retarded values is smooth, and so the set
of support points for the interpolation can only be changed between two time
steps. Since the QMC integration needs the calculation of a lot of points from
a large interval, a significant amount of extrapolation would be involved. How-
ever, the assumptions of the RK(Q)MC methods by Stengle, Lécot, Coulibaly
and Koudiraty, and the method presented here do not require the function
g(t, y(t)) to be smooth in t any more, but demand only boundedness of g and
its derivatives w.r.t. y for all t. This is still fulfilled if we choose the support
points different for different values of t (but always choose the same support
points in a finite neighborhood of t), thus avoiding unnecessary extrapolation.

3.4 Convergence of the RKQMC1, RKQMC2 and RKQMC3 methods

For the first- to third-order RKQMC methods, Lécot and Koudiraty proved
the following lemmas under the assumptions that

(1) there exist t > 0, ρ > 0 such that for 0 ≤ m ≤ s, Dm
y f is measurable

on the set E := ∪0≤t≤T [t, min(t + τ, T )] × B(y(t), ρ) and, for fixed t,
continuous in y on the open ball B(y(t), ρ)

(2) and that for every t ∈ [0, T ] and every y ∈ B(y(t), ρ) the m-th derivative

Dm
y f(u, y) is defined for u ∈ [t, min(t+τ, t)] and bounded by

∥∥∥Dm
y f
∥∥∥

E
for

0 ≤ m ≤ s, and its variation is bounded by VE(Dm
y f) for 0 ≤ m ≤ s− 1.

Lemma 6 (Lécot, [3]) For the RKQMC1 method, if hn ≤ τ and ‖en‖ +
hn ‖f‖∞,ε < ρ, then

‖εn‖ ≤
hn

2
‖f‖∞,ε

∥∥∥D1
yf
∥∥∥
∞,ε

(28)

‖dn‖ ≤
∥∥∥D1

yf
∥∥∥
∞,ε

‖en‖ (29)

‖δn‖ ≤ Vε(f)D∗
N(X) (30)

Lemma 7 (Lécot, [3]) If for the RKQMC2 method the additional conditions

hn ≤ τ and ‖en‖+(1+α)hn ‖f‖∞,ε < ρ hold, then with Di =
∥∥∥Di

yf
∥∥∥
∞,ε

, i = 1, 2
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the following inequalities hold:

‖εn‖ ≤
h2

n

12
‖f‖∞,ε

(
(3α2 + 2) ‖f‖∞,ε D2 + 2(D1)

2
)

=: c
(2)
1 (f)h2

n (31)

‖dn‖ ≤
1

2

(
1 +

1

|α|
+

1

|β|
+ hnD1

)
D1 ‖en‖ =: c

(2)
2 (f, hn) ‖en‖ (32)

‖δn‖ ≤
1

2

(
1 +

1

|α|
+

1

|β|
+ hn

(
D1 + 2Vε(D

1
yf)

))
Vε(f)D∗

N(X) =: (33)

=: c
(2)
3 (f, hn)D∗

N(X) (34)

Lemma 8 (Koudiraty, [8]) If hn ≤ τ and ‖en‖+ hnc
∗ ‖f‖E < ρ with

c∗ := 1 + max
(

max
1≤l≤L1

|b2,l| , max
1≤l≤L3

∣∣∣b(1)
3,l

∣∣∣+ max
1≤l≤L3

∣∣∣b(2)
3,l

∣∣∣ , max
1≤l≤L3

|c3,l|
)

hold for the RKQMC3 method, then there exist c1(hn) = O(1), c2(hn) = O(1)
and c3(hn) = O(1) such that

‖εn‖ ≤ c1(hn)h3
n (35)

‖δn‖ ≤ c2(hn) ‖en‖ (36)

‖dn‖ ≤ c3(hn)D∗
N(X) (37)

Inserting these lemmas in our result from theorem 3, one obtains the conver-
gence proofs for the RKQMC1, RKQMC2 and RKQMC3 methods for delay
differential equations:

Corollary 9 For the first order RKQMC1 method applied to delay differential
equations, if the past values are interpolated in a way that the assumptions of
Proposition 1 are fulfilled, and H ≤ τ as well as

e‖D1
yf‖∞,ε

tn ‖e0‖+
eDtn − 1

D

(
1

2
‖f‖∞,ε DH + Vε(f)D∗

N(X)
)

+ H ‖f‖∞,ε < ρ

hold with D =
∥∥∥D1

yf
∥∥∥
∞,ε

, then the method is convergent for hn → 0, D∗
N(X) →

0 and ‖e0‖ → 0, and the error is bounded by

‖en‖ ≤ ‖e0‖ e(D+L2)tn+
e(D+L2)tn − 1

D + L2

(
Vε(f)D∗

N(X) + L2MHq +
1

2
‖f‖∞,ε DH

)
(38)

Corollary 10 For the second order RKQMC2 method for delay differential
equations, the error under the assumptions of Lemma 7 and proposition 1
is bounded by (27) with c1 := c

(2)
1 (f), c2 := max0≤j<n c

(2)
2 (f, hn) and c3 :=

max0≤j<n c
(2)
3 (f, hn) with the definitions from equations (31) to (33), and thus

11



the method is convergent. Its order is min(2, q), if a low-discrepancy point set

is used with N = O
(
H−min(2,q)

)
.

Corollary 11 For the third order RKQMC3 method for delay differential
equations, the error under the assumptions of Lemma 8 and proposition 1
is bounded by (27) with c

(3)
1 (hn), c

(3)
2 (hn) and c

(3)
3 (hn) as defined in [8]. So the

method is convergent with order min(3, q), if a low-discrepancy point set is

used with N = O
(
H−min(3,q)

)

4 Computational experiments

We now investigate the effects of the use of Runge Kutta QMC methods
compared to conventional Runge Kutta methods at the example of the delay
differential equation

y′(t) = 3y(t− 1)sin(λt), for t ≥ 0 (39)

y(t) = 1, for t ≤ 0 (40)

with λ = 2ν and 1 ≤ ν ≤ 16. The exact solutions for different values of ν is
shown in figure 1. As one can see, the solution oscillate heavily, although their
amplitude get smaller as ν grows. One also has to notice the kink at t = 1 for
all solutions, which is the first discontinuity of y′(t) due to the initial function
not being a solution of the DDE.

In the sequel, if not mentioned explicitly, all calculations were done with a
time step of hn = h = 0.001 for values up to T = 5, and the past values are in-
terpolated by a fourth order Hermite interpolation. To compare the RKQMC
methods with conventional Runge Kutta methods, we use the RKQMC meth-
ods presented in the previous chapter, as well as some low order Runge Kutta
Methods (the 4-stage Runge method of order 3 and the 3-stage method of
Heun of order 3). Additionally, we computed the results with Butcher’s 6-
th order method as an example of a high order Runge Kutta scheme. These
schemes are discussed in [12] at great detail, so we will not even give the
Butcher tableaus here.

To compare the various methods, we compute the average error

err =
1

K

K∑
i=1

|y(tim)− yim|

of a method where K and m are chosen such that tim − t(i−1)m = 0.1 and
tKm = T .

We are interested in the convergence order of the RKQMC methods applied

12
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Figure 1. The exact solution of (39) for some values of λ.

to delay differential equations. In theorem 3 and its corollaries 9, 10 and 11,
the error bound depends on the discrepancy of the point set used for the sim-
ulation, as well as on the method itself, and on hn. If we take N = O(hi

n),
i = 1, 2, 3, according to the corollaries we would expect a different conver-
gence order for the RKQMC1, RKQMC2 and RKQMC3 method. For λ = 25,
however, we do not observe any difference with this specific DDE, neither for
different orders of N , nor for the different RKQMC schemes, as figure 3 shows
(other delay differential equations show the expected behavior).

A very important question when dealing with QMC methods is how many
points to use for the integration. Taking too many points does not hurt ac-
curacy, but unnecessarily wastes computing time. On the other hand, if one
takes N too little, the Quasi-Monte Carlo integration error will not become
negligible and thus introduce a bias to the result. If we take a fixed hn = 0.001,
λ = 25 and just increase the number of points, figure 2 shows that values of
N larger than about 29 = 512, cannot noticeably improve the error any more,
because then the Runge Kutta and the truncation error outweigh the Quasi-
Monte Carlo error. One can also notice that with low-discrepancy sequences
like Sobol’s sequence, which we used for all our calculations, the curve is much
smoother than with pseudo-random numbers as used in Monte Carlo methods.
This of course is caused by the good distribution properties of these sequences,
and can improve the error considerably below the Monte Carlo error (see e.g.
[8]).

As Stengle [2] pointed out, the RK(Q)MC methods need a lot more evalu-
ations of f , and thus can only claim advantage if these calculations can be
carried out in parallel. Additionally, the RKQMC methods might even out-
perform conventional high order Runge-Kutta schemes, or calculations with a
much lower hn. The results of Stengle, Lécot and Koudiraty show that, their
RK(Q)MC methods only gain advantage for differential equations where f
varies significantly faster in t than in space. Figure 4 and table 1 show the

13
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RKQMC2 Sobol

RKQMC1 Sobol
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Figure 2. With fixed hn and increasing N , there is no visible difference
in the convergence order (λ = 32).
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Log2HerrL

RKQMC3 N=OHhn
3LRKQMC2 N=OHhn
3LRKQMC1 N=OHhn
3LRKQMC3 N=OHhn
2LRKQMC2 N=OHhn
2LRKQMC1 N=OHhn
2LRKQMC3 N=OHhnLRKQMC2 N=OHhnLRKQMC1 N=OHhnL

Figure 3. Error for N = O(hn), N = O(h2
n) and N = O(h3

n). (λ = 32)

error for the various methods for different values of ν in λ = 2ν . The time
steps are hn = 0.001 for the Butcher, Runge and Heun method, and hn = 0.01
for the RKQMC methods. While for small values of λ the conventional Runge
Kutta methods clearly give better results than the randomized Runge Kutta
schemes, for high values of λ the situation changes, and the RKQMC schemes
(which are low order methods) at least reach the same or a better average
error than even the high order Butcher method.

5 Conclusion

In this paper we showed that the randomized Runge Kutta schemes as pro-
posed by Stengle, Lécot, Coulibaly and Koudiraty can be successfully extended
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Figure 4. For rapidly varying DDE (λ ≥ 210), RKQMC methods outper-
form conventional high order Runge Kutta schemes.

Butcher Runge RKQMC1 RKQMC2 RKQMC3 RKQMC3

λ N = 1000 N = 1000 N = 1000 N = 10

21 −10.6663 −10.4277 −8.31395 −8.31394 −8.31389 −1.57259

22 −8.20716 −8.04143 −4.83919 −4.83909 −4.83908 −1.0597

23 −10.7767 −10.5397 −7.97728 −7.97651 −7.97628 −2.42371

24 −7.84711 −7.62639 −4.69098 −4.69087 −4.69086 −3.41549

25 −8.11869 −7.89766 −5.05594 −5.05595 −5.05624 −4.13132

26 −9.35768 −9.14174 −7.10261 −7.10411 −7.10611 −5.23092

27 −8.40319 −8.17748 −4.9544 −4.95436 −4.95707 −4.95889

28 −12.303 −11.9188 −5.54122 −5.55782 −5.55972 −5.92666

29 −7.95694 −7.73868 −8.4076 −8.37118 −8.40286 −8.30661

210 −8.0165 −7.80652 −8.75515 −8.66781 −9.17772 −5.1714

211 −8.24265 −8.05737 −9.69635 −9.12556 −9.17449 −6.22673

212 −9.09544 −8.88462 −10.0774 −10.1313 −9.89475 −3.20923

213 −10.3594 −9.72112 −10.2139 −10.2555 −10.2228 −9.58793

214 −10.7523 −10.4912 −10.8732 −11.0333 −11.1829 −5.65672

215 −9.96253 −8.92665 −12.6424 −12.5296 −11.396 −4.90893

216 −10.956 −8.4328 −9.28126 −10.7504 −11.8211 −3.4884

217 −8.85172 −9.77356 −9.94702 −10.4492 −9.48664 −5.50948

218 −8.80146 −8.58722 −11.3812 −10.3786 −10.1079 −6.2911

Table 1. Error for increasing parameter values λ (hn = 0.001 for
Butcher, Runge and Heun, and hn = 0.01 for RKQMC)

to delay differential equations, and for rapidly varying differential equations,
even the low order RKQMC methods lead to an improvement over conven-
tional (high- and low-order) Runge Kutta schemes. Although the RKQMC
methods need several times more function evaluations than its Runge Kutta
counterparts of the same order, the possibility of parallel computing and the
fact that the RKQMC methods even outperform high order Runge Kutta
schemes for certain types of delay differential equations, make the RKQMC
methods for delay differential equations a viable solution method.
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