Reinhold Kainhofer

Hlawka-Mück techniques for option pricing
Quasi-Monte Carlo methods with NIG distribution

joint work with J. Hartinger and M. Predota

Singapore, November 25, 2002
Overview

- Sample problem: Valuing Asian options
- Crude Monte Carlo simulation
- Quasi-Monte Carlo estimators
 - Integral transformation
 - Ratio of uniforms
 - Hlawka-Mück’s method for density f^Q
- Numerical comparison
Sample problem: Valuing Asian options

arithmetic mean until expiration time

Pay-Off (discrete Asian option, call)

\[P(S_T) = \left(\frac{1}{n} \sum_{i=1}^{n} S_{t_i} - K \right)^+ \]

\((S_t)_{t \geq 0} \) ... price process, \(K \) ... strike price

\(S_t = e^{X_t} \) with Levy process \((X_t)_{t \geq 0}\)

Increments \(h_i = X_i - X_{i-1} \) with distribution \(H \)
(e.g. NIG, Variance-Gamma, Hyperbolic, ...)

NIG distribution

Use the NIG distribution for the increments $h_i \sim H^Q$. Advantage: closed under convolution \Rightarrow dimension reduction, sample only weekly instead of daily

Valuation

Using fundamental theorem (Schachermayer):

$$C_{t_0} := e^{-r(t_n-t_0)}E^Q \left[\left(\frac{1}{n} \sum_{i=1}^{n} S_{t_i} - K \right)^+ \right]$$

r ... constant interest rate
Q ... equivalent martingale measure (Esscher measure)
NIG distribution

Use the NIG distribution for the increments $h_i \sim H^Q$.
Advantage: closed under convolution \Rightarrow dimension reduction, sample only weekly instead of daily

Valuation

Using fundamental theorem (Schachermayer):

$$C_{t_0} := e^{-r(t_n-t_0)}\mathbb{E}^Q \left[\left(\frac{1}{n} \sum_{i=1}^{n} S_{t_i} - K \right)^+ \right]$$

r ... constant interest rate
Q ... equivalent martingale measure (Esscher measure)
Crude Monte Carlo simulation

Direct simulation of the process, arithmetic mean over L pathes:

1. Simulate L price pathes $\left((S_0^{(l)}, S_1^{(l)}, \ldots)\right)_{l \geq 1}$
 with $S_i = e^{X_i}$, $X_i = X_{i-1} + h_i$, $h_i \sim HQ$.
2. Calculate pay-off $P^{(l)}$ for each path l
3. Crude MC estimator: $\hat{C}_0 = e^{-r(t_n-t_0)} \frac{1}{L} \sum_{l=1}^{L} P^{(l)}$

Random numbers $h_i \sim HQ$ created using acceptance-rejection.
Quasi-Monte Carlo schemes

Problem: QMC numbers \(\overset{i.i.d.}{\sim} NIG(\alpha, \beta, \delta, \mu) \)
Quasi-Monte Carlo schemes

Problem: QMC numbers $i.i.d. \sim NIG(\alpha, \beta, \delta, \mu)$

2 Solutions:

1. Hlawka-Mück method for direct creation of $(x_n)_{1 \leq n \leq N} \overset{i.i.d.}{\sim} NIG$
 \Rightarrow direct QMC calculation of the expectation value
Quasi-Monte Carlo schemes

Problem: QMC numbers \(i.i.d. \sim NIG(\alpha, \beta, \delta, \mu) \)

2 Solutions:

1. Hlawka-Mück method for direct creation of \((x_n)_{1 \leq n \leq N} \sim NIG\) \(\Rightarrow \) direct QMC calculation of the expectation value

2. Transformation of the integral using a suitable density (Ratio of uniforms, ”Hat”) \(\Rightarrow \) variance reduction (if done right)
Transformation

Using a distribution $K(\vec{x}) = u$:

$$\int_{\mathbb{R}^n} P(\vec{x}) f_H^Q(\vec{x}) d\vec{x} = \int_{[0,1]^n} P(K^{-1}(u)) \frac{f_H^Q(K^{-1}(u))}{k(K^{-1}(u))} du$$
Transformation

Using a distribution $K(\vec{x}) = u$:

$$\int_{\mathbb{R}^n} P(\vec{x}) f^Q_H(\vec{x}) d\vec{x} = \int_{[0,1]^n} P(K^{-1}(u)) \frac{f^Q_H(K^{-1}(u))}{k(K^{-1}(u))} du$$

Aim: Variance reduction for a suitably chosen distribution $K \Rightarrow k$ proportional to $|P \cdot f^Q_H|$.
Transformation

Using a distribution $K(\vec{x}) = u$:

$$\int_{\mathbb{R}^n} P(\vec{x}) f_H^Q(\vec{x}) d\vec{x} = \int_{[0,1]^n} P(K^{-1}(u)) \frac{f_H^Q(K^{-1}(u))}{k(K^{-1}(u))} du$$

Aim: Variance reduction for a suitably chosen distribution $K \Rightarrow k$ proportional to $|P \cdot f_H^Q|$.

Problem: ”Usual” transformation $F(x) = u$ leads to integrand with unbound variation
Ratio of uniforms

"Hat" function, good choice for integral transformation
Hlawka-Mück

- Hlawka and Mück (1972): transformation of uniformly distributed sequences to low-discrepancy sequences with density ρ
- Hlawka (1997): simpler construction for densities $\rho = \rho_1(x_1)\rho_2(x_2) \ldots \rho_s(x_s)$
Hlawka-Mück

- Hlawka and Mück (1972): transformation of uniformly distributed sequences to low-discrepancy sequences with density ρ
- Hlawka (1997): simpler construction for densities $\rho = \rho_1(x_1)\rho_2(x_2)\ldots\rho_s(x_s)$

For density $\rho(x) = \rho_1(x_1) \cdots \rho_s(x_s)$ define

$$F_1(x^{(1)}) = \int_0^{x^{(1)}} \int_0^1 \cdots \int_0^1 \rho(u_1, \ldots, u_s) du_1 \cdots du_s$$

$$\vdots$$

$$F_s(x^{(s)}) = \int_0^1 \int_0^1 \cdots \int_0^{x^{(s)}} \rho(u_1, \ldots, u_s) du_1 \cdots du_s$$

Creation of net $(y_k)_{1 \leq k \leq N}$ with density ρ:

$$y^{(j)}_k = \frac{1}{N} \sum_{r=1}^N \left[1 + x^{(j)}_k - F_j(x^{(j)}_r) \right] , \quad j = 1, \ldots s, \quad k = 1, \ldots N$$
Discrepancy

The discrepancy of \((y_k)_{1 \leq k \leq N}\) can be bounded by

\[
D_N ((y_k), \rho) \leq (2 + 6sM(\rho)) D_N ((y_k))
\]

with \(M(\rho) = \sup \rho\).
Discrepancy

The discrepancy of \((y_k)_{1 \leq k \leq N}\) can be bounded by

\[
D_N ((y_k), \rho) \leq (2 + 6s M(\rho)) D_N ((y_k))
\]

with \(M(\rho) = \sup \rho\).

QMC estimator

1. Creation of low-discrepancy points with density \(\frac{f^Q_k(K^{-1}(x))}{k(K^{-1}(x))}\)

 (Transformation of the integral \(\mathbb{R}^n\) to \([0, 1]^n\) using double-exponential distribution \(K(x)\))
Discrepancy

The discrepancy of $(y_k)_{1 \leq k \leq N}$ can be bounded by

$$D_N ((y_k), \rho) \leq (2 + 6sM(\rho))D_N ((y_k))$$

with $M(\rho) = \sup \rho$.

QMC estimator

1. Creation of low-discrepancy points with density $\frac{f^Q_H(K^{-1}(x))}{k(K^{-1}(x))}$

 (Transformation of the integral \mathbb{R}^n to $[0, 1]^n$ using double-exponential distribution $K(x)$)

2. Transformation $[0, 1]^n$ to \mathbb{R}^n of the sequence using double-exponential distribution $K^{-1}(x)$.

Estimator similar to crude Monte Carlo
Numerical results

Dimension 4

ROU and Hlawka-Mück are considerably better than Monte Carlo and control variate
• ROU looses performance
• Hlawka-Mück gives best results